Cho tam giác ABC vuông tại A, đường cao AH hệ thức nào sau đây là đúng 2023

Đánh giá bài này

Đáp án chính xác nhất cho câu hỏi trắc nghiệm “Cho tam giácABCvuông tại A, đường cao AH.Tìm hệ thức đúng” cùng với những kiến thức tham khảo về Một số hệ thức về cạnh và đường cao trong tam giác vuông là tài liệu đắt giá môn Toán dành cho các thầy cô giáo và bạn em học sinh tham khảo.

Trắcnghiệm: Cho tam giácABCvuông tại A, đường cao AH.Tìm hệ thức đúng:

A. AH2 = AB.AC

B. AH2 = BH.CH

C. AH2 = AB.BH

D. AH2 = CH.BC

Trả lời:

Đáp án đúng: B.AH2= BH.CH

Cho tam giác ABC vuông tại A, đường cao AH. Khi đó ta có hệ thức đúng là:AH2= BH.CH

Cùng Top lời giải tìm hiểu vềMột số hệ thức về cạnh và đường cao trong tam giác vuông cácbạn nhé!

Kiến thức tham khảo về Một số hệ thức về cạnh và đường cao trong tam giác vuông

1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền

Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền.

Trong tam giác ABC vuông tại A ta có: b2= a.b’; c2= a.c’

2. Một số hệ thức liên quan đến đường cao

a) Định lý 1

– Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của cạnh góc vuông trên cạnh huyền

– Trong tam giác ABC vuông tại A ta có: h2= b’.c’.

b) Định lý 2

– Trong một tam giác vuông, tích của hai cạnh góc vuông bằng tích của cạnh huyền với đường cao tương ứng

– Trong tam giác ABC vuông tại A ta có: a.h = b.c

c) Định lý 3

– Trong tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.

– Trong tam giác ABC vuông tại A ta có:

3. Bài tập vận dụng

Câu 1:Tìm x, y trong hình vẽ sau:

A. x = 7,2; y = 11,8

B. x = 7; y = 12

C. x = 7,2; y = 12,8

D. x = 7,2; y = 12

Lời giải

Câu 2:Cho tam giác ABC vuông tại A, đường cao AH (như hình vẽ). Hệ thức nào sau đây là sai?

Lời giải

Nhận thấy ah = bc nên phương án C là sai

Đáp án cần chọn là: C

Câu 3:Cho tam giác ABC vuông tại A, chiều cao AH và AB = 5; AC = 12.

Đặt BC = y, AH = x. Tính x, y

A. x = 4; y =√119

B.y=6013; x = 13


(adsbygoogle = window.adsbygoogle || []).push({});

C. x = 4; y = 13

D.x=6013; y = 13

Lời giải

Câu 4:Tìm x, y trong hình vẽ sau:

A. x= 6,5; y = 9,5

B. x = 6,25; y = 9,75

C. x = 9,25; y = 6,75

D. x = 6; y = 10

Lời giải

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:

AB2= BH.BC

⇔BH=AB2 / BC=100/16=6,25

⇒CH = BC – BH = 16 – 6,25 = 9,75

Vậy x = 6,25; y = 9,75

Đáp án cần chọn là: B

Câu 5:Tính x, y trong hình vẽ sau:

A. x = 3,6; y = 6,4

B. y = 3,6; x = 6,4

C. x = 4; y = 6

D. x = 2,8; y = 7,2

Lời giải

Theo định lý Py-ta-go ta có

BC2= AB2+ AC2

⇔ BC2= 100 → BC = 10

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:

AB2= BH.BC

⇒BH=AB2 / BC=62 / 10=3,6hay x = 3,6

⇒ CH = BC – BH = 10 – 3,6 = 6,4

Đáp án cần chọn là: A

Câu 6:Cho tam giác ABC vuông tại A, AH⊥BC (H thuộc BC).

Cho biết AB : AC = 4 : 5 và BC =√4141cm.

Tính độ dài đoạn thẳng CH (làm tròn đến chữ số thập phân thứ nhất).

A. CH ≈ 2,5

B. CH ≈ 4


(adsbygoogle = window.adsbygoogle || []).push({});

C. CH ≈ 3,8

D. CH ≈ 3,9

Lời giải

Ta có AB : AC = 4 : 5

Đáp án cần chọn là: D

Câu 7:Tính x, y trong hình vẽ sau:

A. x = 3,2; y = 1,8

B. x = 1,8; y = 3,2

C. x = 2; y = 3

D. x = 3; y = 2

Lời giải

Theo định lý Py-ta-go ta có

BC2= AB2+ AC2

⇔BC2= 25 → BC = 5

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:

Câu 8:Tính diện tích hình thang ABCD có đường cao bằng 12cm, hai đường chéo AC và BD vuông góc với nhau, BD = 15cm.

A. 150cm2

B. 300cm2

C. 125cm2

D. 200cm2

Lời giải

Qua B vẽ đường thẳng song song với AC, cắt DC ở E.

Gọi BH là đường cao của hình thang.

Ta có BE // AC, AC⊥BD nên BE⊥BD

Áp dụng định lý Pytago vào tam giác vuông BDH,

ta có: BH2+ HD2= BD2

⇒⇒122+ HD2= 152

⇒HD2= 81⇒HD = 9cm

Xét tam giác BDE vuông tại B:

BD2= DE.DH⇒152= DE.9

⇒DE = 25cm

Ta có: AB = CE nên:

AB + CD = CE + CD = DE = 25cm

Do đó SABCD= 25.12 : 2 = 150(cm2)


(adsbygoogle = window.adsbygoogle || []).push({});

Đáp án cần chọn là: A

Câu 9:Cho tam giác ABC vuông tại A, đường cao AH (như hình vẽ). Hệ thức nào sau đây là đúng?

A. AH2= AB. AC

B. AH2= BH.CH

C. AH2= AB.BH

D. AH2= CH.BC

Cho tam giácABCvuông tại A, đường cao AH.Tìm hệ thức đúng

Cho tam giác ABC vuông tại A, đường cao AH. Khi đó ta có hệ thức

HA2= HB.HC

Đáp án cần chọn là: B

Câu 10:Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 3 : 4 và AB + AC = 21

A. AB = 9; AC = 10; BC = 15

B. AB = 9; AC = 12; BC = 15

C. AB = 8; AC = 10; BC = 15

D. AB = 8; AC = 12; BC = 15

Lời giải

Theo giả thiết AB : AC = 3 : 4

Suy raAB / 3=AC / 4= (AB+AC) / (3+4) =3

Do đó AB = 3.3 = 9 (cm);

AC = 3.4 = 12 (cm)

Tam giác ABC vuông tại A,

theo định lý Pytago ta có:

BC2= AB2+ AC2= 92+ 122= 225,

suy ra BC = 15cm

Đáp án cần chọn là: B

19/06/2021 912

B. AH2 = BH.CH

Đáp án chính xác


Page 2

19/06/2021 784

D. AH2=AB2+AC2AB2.AC2

Đáp án chính xác

Bạn đang đọc : Cho tam giác ABC vuông tại A, đường cao AH hệ thức nào sau đây là đúng 2023 được cập nhập bởi Tekmonk

Thông tin và kiến thức về chủ đề Cho tam giác ABC vuông tại A, đường cao AH hệ thức nào sau đây là đúng 2023 do Học viện Công nghệ Tekmonk chọn lọc và tổng hợp cùng với các chủ đề liên quan khác.

Tham khảo thêm các khóa học công nghệ đỉnh cao tại: Học viện công nghệ Tekmonk
Cho tam giác ABC vuông tại A, đường cao AH hệ thức nào sau đây là đúng 2023

Nguồn: Internet

Có thể bạn muốn biết:

Có thể bạn quan tâm More From Author

kho 20 hni dong da hanoi | khoa hoc lap trinh cho tre em | lap trinh game
mua sam cam giong o dau | khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình python
Anna gấu 33 livestream link facebook | Khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình scratch | lập trình python
sắc np 1 nữ nhiều nam | Khóa học lập trình | lập trình game | lập trình web | lập trình python

Để lại bình luận