Giải bài 27, 28, 29, 30, 31, 32, 33 trang 22, 23 SGK toán 8 tập 2 2023

Đánh giá bài này

Bạn đang tìm kiếm Giải bài 27, 28, 29, 30, 31, 32, 33 trang 22, 23 SGK toán 8 tập 2 2023 phải không? Xin chúc mừng bạn đã tìm đúng chỗ rồi! Hãy đọc ngay bài viết dưới đây của Tekmonk

Giải bài tập trang 22, 23 bài 5 Phương trình chứa ẩn ở mẫu sgk toán 8 tập 2. Câu 27: Giải các phương trình:…

Bài 27 trang 22 sgk toán 8 tập 2

Giải các phương trình:

a) ( frac{2x-5}{x+5}) = 3;                                  b) ( frac{x^{2}-6}{x}=x+frac{3}{2})

c) ( frac{(x^{2}+2x)-(3x+6)}{x-3}=0);               d) ( frac{5}{3x+2}) = 2x – 1

Hướng dẫn giải:

a) ĐKXĐ: x # -5

( frac{2x-5}{x+5}) = 3 ⇔ ( frac{2x-5}{x+5}) ( =frac{3(x+5)}{x+5})

                ⇔ 2x – 5 = 3x + 15

                ⇔ 2x – 3x = 5 + 20

                ⇔ x          = -20 thoả ĐKXĐ

Vậy tập hợp nghiệm S = {-20}

b) ĐKXĐ: x # 0

 ( frac{x^{2}-6}{x}=x+frac{3}{2}) ⇔ ( frac{2(x^{2}-6)}{2x}=frac{2x^{2}+3x}{2x})

Suy ra: 2x2 – 12 = 2x2 + 3x ⇔ 3x = -12 ⇔ x = -4 thoả x # 0

Vậy tập hợp nghiệm S = {-4}.

c) ĐKXĐ: x # 3

( frac{(x^{2}+2x)-(3x+6)}{x-3}=0) ⇔ x(x + 2) – 3(x + 2) = 0

                                    ⇔ (x – 3)(x + 2) = 0 mà x # 3

                                    ⇔ x + 2 = 0 

                                    ⇔ x = -2

Vậy tập hợp nghiệm S = {-2}

d) ĐKXĐ: x # ( -frac{2}{3})

( frac{5}{3x+2}) = 2x – 1 ⇔ ( frac{5}{3x+2}) ( =frac{(2x -1)(3x+2)}{3x+2})

                       ⇔ 5 = (2x – 1)(3x + 2)

                       ⇔ 6x2 – 3x + 4x – 2 – 5 = 0

                       ⇔ 6x2 + x – 7 = 0

                       ⇔ 6x2 – 6x + 7x – 7 = 0

                       ⇔ 6x(x – 1) + 7(x – 1) = 0

                       ⇔ (6x + 7)(x – 1)        = 0

                       ⇔ x = ( -frac{7}{6}) hoặc x = 1 thoả x # ( -frac{2}{3})

Vậy tập nghiệm S = {1;( -frac{7}{6})}. 


Bài 28 trang 22 sgk toán 8 tập 2

Giải các phương trình:

a) ( frac{2x-1}{x-1}+1=frac{1}{x-1});                         b) ( frac{5x}{2x+2}+1=-frac{6}{x+1})

c) x +  ( frac{1}{x}) = x2 + ( frac{1}{x^{2}});                              d) ( frac{x+3}{x+1}+frac{x-2}{x}) = 2.

Hướng dẫn giải:

 a) ĐKXĐ: x # 1

Khử mẫu ta được: 2x – 1 + x – 1 = 1 ⇔ 3x = 3 ⇔ x = 1 không thoả mãn ĐKXĐ

Vậy phương trình vô nghiệm.

b) ĐKXĐ: x # -1

Khử mẫu ta được: 5x + 2x + 2 = -12

                     ⇔  7x               = -14   

                     ⇔ x                  = -2

Vậy phương trình có nghiệm x = -2.

c) ĐKXĐ: x # 0.

Khử mẫu ta được: x3 + x = x4 + 1

                     ⇔ x4 – x3 -x + 1 = 0

                     ⇔ x3(x – 1) –(x – 1) = 0

                     ⇔ (x3 -1)(x – 1) = 0

                     ⇔ x3 -1 = 0 hoặc x – 1 = 0

1) x – 1 = 0 ⇔ x = 1

2) x3 -1 = 0 ⇔ (x – 1)(x2 + x + 1) = 0

                 ⇔ x = 1 hoặc x2 + x + 1 = 0 ⇔ ( (x+frac{1}{2})^{2}) = ( -frac{3}{4}) (vô lí)

Vậy phương trình có nghiệm duy nhất x = 1.

d) ĐKXĐ: x # 0 -1.

Khử mẫu ta được x(x + 3) + (x + 1)(x – 2) = 2x(x + 1)

                    ⇔ x2 + 3x + x2 – 2x + x – 2 = 2x2 + 2x

                    ⇔ 2x2 + 2x – 2 = 2x2 + 2x

                    ⇔0x = 2

Phương trình 0x = 2 vô nghiệm.

Vậy phương trình đã cho vô nghiệm

       

          


Bài 29 trang 22 sgk toán 8 tập 2

Bạn Sơn giải phương trình ({{{x^2} – 5x} over {x – 5}} = 5left( 1 right)) như sau:

(1)   ⇔({x^2} – 5x = 5left( {x – 5} right))

⇔({x^2} – 5x = 5x – 25)

⇔({x^2} – 10x + 25 = 0)

⇔({left( {x – 5} right)^2} = 0)

⇔(x = 5)

Bạn Hà cho rằng Sơn giải sai vì đã nhân hai vế với biểu thức x – 5 có chứa ẩn. Hà giải bằng cách rút gọn vế trái như sau:

(1)    ⇔({{xleft( {x – 5} right)} over {x – 5}} = 5 Leftrightarrow x = 5)

Hãy cho biết ý kiến của em về hai lời giải trên.

Hướng dẫn làm bài:

+ Trong cách giải của bạn Sơn có ghi

(1) ({x^2} – 5x = 5left( {x – 5} right))   ⇔ là sai vì x = 5 không là nghiệm của (1) hay ( 1) có ĐKXĐ :(x ne 5) .

+ Trong cách giải của Hà có ghi

(1)    ⇔({{xleft( {x – 5} right)} over {x – 5}} = 5 Leftrightarrow x = 5)

Sai ở chỗ không tìm ĐKXĐ của phương trình mà lại rút gọn x – 5.

Tóm lại cả hai cách giải đều sai ở chỗ không tìm ĐKXĐ khi giải phương trình chứa ẩn ở mẫu.


Bài 30 trang 23 sgk toán 8 tập 2

Giải các phương trình:

a) ({1 over {x – 3}} + 3 = {{x – 3} over {2 – x}})                               

b) (2x – {{2{x^2}} over {x + 3}} = {{4x} over {x + 3}} + {2 over 7})

c) ({{x + 1} over {x – 1}} – {{x – 1} over {x + 1}} = {4 over {{x^2} – 1}})                           

d) ({{3x – 2} over {x + 7}} = {{6x + 1} over {2x – 3}})

Hướng dẫn làm bài:

a) ({1 over {x – 3}} + 3 = {{x – 3} over {2 – x}})         ĐKXĐ:  (x ne 2)           

Khử mẫu ta được: (1 + 3left( {x – 2} right) =  – left( {x – 3} right) Leftrightarrow 1 + 3x – 6 =  – x + 3)

⇔(3x + x = 3 + 6 – 1)

⇔4x = 8

⇔x = 2.

x = 2 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

b) (2x – {{2{x^2}} over {x + 3}} = {{4x} over {x + 3}} + {2 over 7})  ĐKXĐ:(x ne  – 3)

Khử mẫu ta được:

(14left( {x + 3} right) – 14{x^2})= (28x + 2left( {x + 3} right))

(Leftrightarrow 14{x^2} + 42x – 14{x^2}= 28x + 2x + 6)

⇔ (42x – 30x = 6)

⇔(12x = 6)

⇔(x = {1 over 2})

(x = {1 over 2}) thỏa ĐKXĐ.

Vậy phương trình có nghiệm (x = {1 over 2})

c) ({{x + 1} over {x – 1}} – {{x – 1} over {x + 1}} = {4 over {{x^2} – 1}})    ĐKXĐ:(x ne  pm 1)

Khử mẫu ta được: ({left( {x + 1} right)^2} – {left( {x – 1} right)^2} = 4)            

⇔({x^2} + 2x + 1 – {x^2} + 2x – 1 = 4)

⇔(4x = 4)

⇔(x = 1)

x = 1 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

 d) ({{3x – 2} over {x + 7}} = {{6x + 1} over {2x – 3}}) ĐKXĐ:(x ne  – 7) và ( x ne {3 over 2})

Khử mẫu ta được: (left( {3x – 2} right)left( {2x – 3} right) = left( {6x + 1} right)left( {x + 7} right))  

⇔(6{x^2} – 9x – 4x + 6 = 6{x^2} + 42x + x + 7)

⇔( – 13x + 6 = 43x + 7)       

⇔( – 56x = 1)

⇔(x = {{ – 1} over {56}})

(x = {{ – 1} over {56}}) thỏa ĐKXĐ.

Vậy phương trình có nghiệm (x = {{ – 1} over {56}}) .


Bài 31 trang 23 sgk toán 8 tập 2

Giải các phương trình:

a) ({1 over {x – 1}} – {{3{x^2}} over {{x^3} – 1}} = {{2x} over {{x^2} + x + 1}})

b) ({3 over {left( {x – 1} right)left( {x – 2} right)}} + {2 over {left( {x – 3} right)left( {x – 1} right)}} = {1 over {left( {x – 2} right)left( {x – 3} right)}})

c) (1 + {1 over {x + 2}} = {{12} over {8 + {x^3}}})

d) ({{13} over {left( {x – 3} right)left( {2x + 7} right)}} + {1 over {2x + 7}} = {6 over {left( {x – 3} right)left( {x + 3} right)}})

Giải:

a) ({1 over {x – 1}} – {{3{x^2}} over {{x^3} – 1}} = {{2x} over {{x^2} + x + 1}})

Ta có: ({x^3} – 1 = left( {x – 1} right)left( {{x^2} + x + 1} right))

(= left( {x – 1} right)left[ {{{left( {x + {1 over 2}} right)}^2} + {3 over 4}} right]) cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ:  x ≠ 1

Khử mẫu ta được:

({x^2} + x + 1 – 3{x^2} = 2xleft( {x – 1} right) Leftrightarrow  – 2{x^2} + x + 1 = 2{x^2} – 2x)

(Leftrightarrow 4{x^2} – 3x – 1 = 0)

(Leftrightarrow 4xleft( {x – 1} right) + left( {x – 1} right) = 0)

(Leftrightarrow left( {x – 1} right)left( {4x + 1} right) = 0)

(Leftrightarrow left[ {matrix{{x = 1} cr {x = – {1 over 4}} cr} }right.)

x = 1 không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất (x =  – {1 over 4})

b) ({3 over {left( {x – 1} right)left( {x – 2} right)}} + {2 over {left( {x – 3} right)left( {x – 1} right)}} = {1 over {left( {x – 2} right)left( {x – 3} right)}})

ĐKXĐ: x ≠ 1, x ≠ 2, x ≠ 3

Khử mẫu ta được:

(3left( {x – 3} right) + 2left( {x – 2} right) = x – 1 Leftrightarrow 3x – 9 + 2x – 4 = x – 1)

( Leftrightarrow 5x – 13 = x – 1)

⇔ 4x = 12

⇔ x = 3

x = 3 không thỏa mãn ĐKXĐ.

Vậy phương trình vô nghiệm.

c) (1 + {1 over {x + 2}} = {{12} over {8 + {x^3}}})

Ta có: (8 + {x^3} = left( {x + 2} right)left( {{x^2} – 2x + 4} right))

( = left( {x + 2} right)left[ {{{left( {x – 1} right)}^2} + 3} right])

Do đó:  8 + x2 ≠ 0 khi x + 2 ≠ 0 ⇔ x ≠ -2

Suy ra ĐKXĐ: x ≠ -2

Khử mẫu ta được:

({x^3} + 8 + {x^2} – 2x + 4 = 12 Leftrightarrow {x^3} + {x^2} – 2x = 0)

(Leftrightarrow xleft( {{x^2} + x – 2} right) = 0)

(Leftrightarrow xleft[ {{x^2} + 2x – x – 2} right] = 0)

⇔ x(x + 2)(x – 1) = 0

⇔ x(x -1) = 0

⇔x = 0 hay x = 1

x = 0, x = 1 thỏa ĐKXĐ của phương trình.

Vậy phương trình có tập nghiệm là S = {0;1}.

d) ({{13} over {left( {x – 3} right)left( {2x + 7} right)}} + {1 over {2x + 7}} = {6 over {left( {x – 3} right)left( {x + 3} right)}})

ĐKXĐ: (x ne 3,x ne  – 3,x ne  – {7 over 2})

Khử mẫu ta được:

(13left( {x + 3} right) + left( {x – 3} right)left( {x + 3} right) = 6left( {2x + 7} right) Leftrightarrow 13x + 39 + {x^2} – 9 = 12x + 42)

(Leftrightarrow {x^2} + x – 12 = 0)

(Leftrightarrow {x^2} + 4x – 3x – 12 = 0)

(Leftrightarrow xleft( {x + 4} right) – 3left( {x + 4} right) = 0)

(Leftrightarrow left( {x – 3} right)left( {x + 4} right) = 0)

⇔ x =3 hoặc x = -4

x = 3 không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất x = -4


Bài 32 trang 23 sgk toán 8 tập 2

Giải các phương trình:

a) ({1 over x} + 2 = left( {{1 over x} + 2} right)left( {{x^2} + 1} right)) ;                          

b) ({left( {x + 1 + {1 over x}} right)^2} = {left( {x – 1 – {1 over x}} right)^2})

Hướng dẫn làm bài:

a) ({1 over x} + 2 = left( {{1 over x} + 2} right)left( {{x^2} + 1} right))     (1)

ĐKXĐ:(x ne 0)

(1)  ⇔(left( {{1 over x} + 2} right) – left( {{1 over x} + 2} right)left( {{x^2} + 1} right) = 0)

(Leftrightarrow left( {{1 over x} + 2} right)left( {1 – {x^2} – 1} right) = 0)

⇔ (left( {{1 over x} + 2} right)left( { – {x^2}} right) = 0)

⇔(left[ {matrix{{{1 over x} + 2 = 0} cr { – {x^2} = 0} cr} } right. Leftrightarrow left[ {matrix{{{1 over x} = – 2} cr {{x^2} = 0} cr} } right. Leftrightarrow left[ {matrix{{x = – {1 over 2}} cr {x = 0} cr} } right.)

b) ({left( {x + 1 + {1 over x}} right)^2} = {left( {x – 1 – {1 over x}} right)^2}) (2)

ĐKXĐ: (x ne 0)

(2)  ⇔(left[ {matrix{{x + 1 + {1 over x} = x – 1 – {1 over x}} cr {x + 1 + {1 over x} = – left( {x – 1 – {1 over x}} right)} cr} } right.)

⇔(left[ {matrix{{{2 over x} = – 2} cr {2x = 0} cr} Leftrightarrow left[ {matrix{{x = – 1} cr {x = 0} cr} } right.} right.)

x=0 không thoả ĐKXĐ.

Vậy phương trình có nghiệm duy nhất

Vậy phương trình có nghiệm duy nhất x = -1.


Bài 33 trang 23 sgk toán 8 tập 2

Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:

a) ({{3a – 1} over {3a + 1}} + {{a – 3} over {a + 3}})                           b) ({{10} over 3} – {{3a – 1} over {4a + 12}} – {{7a + 2} over {6a + 18}})

Hướng dẫn làm bài:

a)Ta có phương trình:({{3a – 1} over {3a + 1}} + {{a – 3} over {a + 3}} = 2); ĐKXĐ: (a ne  – {1 over 3},a ne  – 3)      

Khử mẫu ta được :

(left( {3a – 1} right)left( {a + 3} right) + left( {a – 3} right)left( {3a + 1} right) = 2left( {3a + 1} right)left( {a + 3} right))

⇔(3{a^2} + 9a – a – 3 + 3{a^2} – 9a + a – 3 = 6{a^2} + 18a + 2a + 6)

⇔(6{a^2} – 6 = 6{a^2} + 20a + 6)

⇔(20a =  – 12)

⇔(a =  – {3 over 5})

(a =  – {3 over 5}) thỏa ĐKXĐ.

Vậy (a =  – {3 over 5})  thì biểu thức ({{3a – 1} over {3a + 1}} + {{a – 3} over {a + 3}}) có giá trị bằng 2         

b)Ta có phương trình:({{10} over 3} – {{3a – 1} over {4a + 12}} – {{7a + 2} over {6a + 18}} = 2)

ĐKXĐ:(a ne 3;MTC:12left( {a + 3} right))

Khử mẫu ta được:

 (40left( {a + 3} right) – 3left( {3a – 1} right) – 2left( {7a + 2} right) = 24left( {a + 3} right))

⇔(40a + 120 – 9a + 3 – 14a – 4 = 24a + 72)

⇔(17a + 119 = 24a + 72)

⇔( – 7a =  – 47)

⇔(a = {{47} over 7})

(a = {{47} over 7}) thỏa ĐKXĐ.

Vậy (a = {{47} over 7})  thì biểu thức ({{10} over 3} – {{3a – 1} over {4a + 12}} – {{7a + 2} over {6a + 18}})  có giá trị bằng 2.

chinese.com.vn/giao-duc

Bạn đang đọc : Giải bài 27, 28, 29, 30, 31, 32, 33 trang 22, 23 SGK toán 8 tập 2 2023 được cập nhập bởi Tekmonk.

Thông tin và kiến thức về chủ đề Giải bài 27, 28, 29, 30, 31, 32, 33 trang 22, 23 SGK toán 8 tập 2 2023 do Học viện Công nghệ Tekmonk chọn lọc và tổng hợp cùng với các chủ đề liên quan khác.

Tham khảo thêm các khóa học công nghệ đỉnh cao tại: Học viện công nghệ Tekmonk
 			Giải bài 27, 28, 29, 30, 31, 32, 33 trang 22, 23 SGK toán 8 tập 2		 2023

Nguồn: Internet

Có thể bạn muốn biết:

Có thể bạn quan tâm More From Author

Giải bài 1, 2, 3, 4 trang 100 Vở bài tập Toán 5 tập 2		 2023 | Khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình scratch | lập trình python
Cảm nhận bài thơ Đoàn thuyền đánh cá ngắn gọn, hay nhất		 2023 | Khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình scratch | lập trình python
Vật lý 9 bài 25: Sự nhiễm từ của Sắt Thép, Nam châm điện là gì, Đặc điểm và Cấu tạo		 2023 | Khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình scratch | lập trình python
4 Đề đọc hiểu Đây thôn Vĩ Dạ của Hàn Mạc Tử có đáp án chi tiết		 2023 | Khóa học lập trình cho trẻ em | lập trình game | lập trình web | lập trình scratch | lập trình python

Để lại bình luận